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Summary
In this study, I have constructed simple neural oscillators using a pair of altered Morris-Lecar model neurons
by varying different parameters such as system noise levels, synaptic connection type and neuron type (i.e.,
bursting/regular) to quantify and compare degree of synchrony between the two firing coupled neurons. For
measuring synchronization I use two different methods (i.e., cross-correlation of raw voltage traces, and
correlation using gaussian smoothed spike trains) to contrast their effectiveness for quantifying synchrony
across different type of networks.

1 Introduction
Synchronization of neural firing is known to play a role in various neural phenomena. It plays an important
role in memory formation. For example, tighter coupling in firing of neurons in medial temporal lobe in
the brain is correlated with increased memory performance in humans and animals. In the same study it
was found that neural synchronization is linked to a potential cellular mechanism for memory storage and
timing-based learning tasks (Jutras and Buffalo 2010). In addition to this, synchronization is also associated
with epilepsy, which affects about 3 million adults and 0.5 million children in the US and 50 million people
worldwide (CDC 2018; WHO 2020). Mormann et al. (2003) found that decrease in neural synchronization
precedes epileptic seizures and neural desynchronization is an immanent part of seizure initiating mechanism
in humans. (Mormann et al. 2003)

Neural synchronization being an interesting topic to study, it is important to be able to understand how
one can achieve synchronized firing using a simple system and to be able to quantify the synchrony in a
simple neural oscillator. For an oscillator, the synchronization can be of broadly two types, namely, in-phase
synchronization and anti-phase synchronization (Pikovsky and Rosenblum 2007), and different kinds of
oscillator may give rise to different synchronization properties (González-Miranda 2014). For example, in
certain conditions inhibitory synapse in an oscillator gives rise to synchronous firing as opposed to excitation
(Van Vreeswijk, Abbott, and Bard Ermentrout 1994). In an oscillator, noise level may cause desynchronization
and cause the weaker coupling between two neurons. Computational tools can allow us to construct a simple
oscillator and let us study the effect of various factors such as system noise levels etc, on the degree of
synchronization achieved by the oscillator.

To make neurons for oscillators, I use Morris-Lecar (ML) model, which is a reduced two-dimensional non-linear
model for simulating neurons in contrast to the 4-dimensional Hodgkin–Huxley model (Lecar 2007). I use
Ca2+ and K+ ion channels to simulate internal neuronal dynamics, as explained originally in (Morris and
Lecar 1981). Now, if I connect two of such neurons to each other, would they give rise to sustained synchronous
firing? and how does the degree of synchrony vary when I couple those neurons differently? This study is
mainly focused on this question.

For simulating a simple oscillator, I use a half-center oscillator (HCO) made through synaptically connecting
two ML neurons reciprocally with each other. Since different types of oscillators give rise to different oscillation
patterns, I use many different HCOs (See section 2.4), made by varying the type of synapses and neurons.
To get a bursting type HCO, I altered the ML neurons to remove their dependence on external stimulation
current for initiating spikes. These bursting ML neurons have slow internal feedback current, responsible for
their bursting properties (Mainen and Sejnowski 1996).

How synchronized is an oscillator for a given noise level in the neurons? To be able to study effects of noise
(which can represent physical phenomenon such as ambient temperature, etc.), I stochastically simulate
operation of both the ion channels and compare the synchronization of stochastically simulated HCO to the
deterministic simulations. The smaller the count of ion channels present in a neuron, the larger the noise
levels will be for that system. Thus, I vary system size (i.e., Ω) for each ion channel for quantifying their
effects on synchronization.
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2 Methods
I used the Morris–Lecar (ML) model as a base for making my neurons for deterministic simulations (See
Section 2.1.1). I altered the model parameters to get the ion channels (i.e., K+ and Ca2+) to operate
stochastically (see 2.1.2) by modeling the Chemical Langevin Equations for a first order single variable
chemical reaction (see 2.1.3). The altered ion channel properties and a slow internal feedback current are
used for making the ML neurons to operate in the “bursting mode” (see 2.1.4).

Chemical synapses of the type excitatory as well as inhibitory are achieved by introducing the synapses
on ML neurons (see 2.3). Two ML neurons of any type (i.e., deterministic/stochastic and plain/bursting)
are reciprocally connected to each other using chemical synapses (i.e., excitatory or inhibitory) to get the
functioning Half center oscillator (HCO), (see 2.4). The HCO shows a varied degree of synchronizations
based on the type of neurons and the connections. I employ and compare both, the gaussian smoothed
spike-time method (see 2.5.2) and the Pearson’s linear correlation of raw voltage traces, to compare the
degree of synchronization between the participating ML neurons in various types of HCOs.

2.1 ML Neurons
I am simulating an array of altered Morris-Lecar neurons (i.e., ML neurons) in parallel to find the next
membrane voltage and the ion channel states using the present conditions using a Matlab script I wrote for
this purpose (see B.1.1). Any of these neurons can receive a chemical synapse and project a chemical synapse
onto any other neuron connected in the network. The Matlab simulation script (with a “demo” network) is
used for initializing and simulating the network for a given duration (see Appendix B.1.1).

This section contains the details on the mathematical and computational tools used for basic operational
realization of ML neurons. Subsequent sections will cover any further modifications such as introducing
synapses (see 2.3) and enabling slow internal feedback current for bursting mode (see 2.1.4).

2.1.1 Deterministic Neuron

Firstly, to achieve deterministic simulation of ML neurons I used equations (1)-(6), and used some constant
parameters (7), which I referred from (Anderson, Ermentrout, and Thomas 2015; Lecar 2007).

Figure 1: (A) Deterministic ML Neuron membrane voltage and activation of K+ and Ca2+ ion channels,
(left) in plain/regular ML neurons; (right) ML neurons with bursting mode.
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dv

dt
= f(v, n) = 1

C
(Iapp−gCam∞(v)(v − vCa)− gKn(v − vK)− gL(v − vL)) (1)

dn

dt
= g(v, n) = α(v)(1− n)− β(v)n

= (n∞(v)− n)/τ(v) (2)

Equation (1) shows the deterministic membrane voltage for the ML model neurons. In which, n; (n ∈ [0, 1])
represents a fraction of K+ ion channels open at the given time t. Iapp is the current value, measured in
µA/cm2, which can represent either the current-clamp current (i.e, Istim) in case of regular or plain ML
neurons (left in Figure1a) or it can represent the slow internal feedback current (i.e., Iinternal) for the bursting
mode ML neurons (see 2.1.4; right plots in Figure1a). Eq.(2) represents the dynamical opening of K+ ion
channels which depends on α and β, which are the per capita transition rates of ion channels to open or close
dynamically (3). ALternatively, the dynamic operation of n can be computed by the steady-state value of n
(i.e., the fraction of K+ ion channels open in steady-state) and temporal dynamics of the recovery process of
channel operation, τ , as shown in (2). The values of α, β, n∞ and τ depend on a present value of membrane
voltage, v, and can be modeled using the voltage constants (i.e., vc, vd). For convenience, a membrane voltage
dependent variable, ξ, is defined (3). The voltage constants va and vb are used to model membrane voltage
dependent dynamic operation of Ca2+ ion channels.

φ = 0.04 s−1, va = −1.2 mV, vb = 18 mV, vc = 2 mV, vd = 30 mV,

ξ = v − vc
vd

, α(v) = φ cosh(ξ/2)
1 + e2ξ , β(v) = φ cosh(ξ/2)

1 + e−2ξ , (3)

n∞(v) = α(v)
α(v) + β(v) = 1

2(1 + tanh ξ) (4)

m∞ = 1
2

(
1 + tanh(v − va

vb
)
)

(5)

τ(v) = 1
α(v) + β(v) = 1

φ cosh(ξ/2) (6)

Other fixed constants used for deterministic simulations are listed below (7). Ion channel maximum
conductance gK, gCa and gL are for K+, Ca2+ and leak channels respectively, which are measured in mf/cm2.
Reversal potentials for these ion channels (i.e., vK, vCa, vL) and other voltage constants (i.e., va,b,c,d) are
measured in mV. φ, measured in s−1 is a rate constant for the recovery process of K+ ion channels. va
and vc are the voltages at which the ion channel activation function m∞ and n∞, respectively, becomes 0.5;
and vb and vd, respectively, are the slope values for those membrane voltage dependent functions. C is the
membrane capacitance measured in µF/cm2. (Morris and Lecar 1981)

vCa = 120 mV, vK = −84 mV, vL = −60 mV,
gCa = 4.4 mf/cm2, gK = 8 mf/cm2, gL = 2 mf/cm2,

C = 20 µF/cm2, Iapp = (variable; measured in µA/cm2)
(7)

Using the equations (1)-(7), by applying Iapp = Istim = 95, I see the membrane voltage and ion channels as
shown in the left in Figure 1a. Red-markers indicate the identified spikes in the membrane voltage traces
(see 2.5.1). The signal in the second is normalized Ca2+ ion channel activation computed using m∞ and the
signal in the third row represents the normalized activation of K+ ion channels (i.e., n, n ∈ [0, 1]), computed
using equation (2). Bursting mode ML neurons show fast and slow dynamics, that is the fast spikes for action
potential and the slow oscillation of plateau potential, more details on the simulation parameters are given in
section 2.1.4.
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2.1.2 Stochastic ML Neuron

Stochastic activation of both, the K+ and Ca2+, ion-channels are used for simulation of ML neurons and to
compute membrane voltage (Figure 1b). For the simulation I used the following equations (8)-(20), and used
constant parameters (21) for the ML neurons, as described in (Anderson, Ermentrout, and Thomas 2015).

Figure 1: (B) Stochastic ML Neuron membrane voltage and Stochastic activation of K+ and Ca2+ ion
channels, (left) in plain/regular ML neurons; (right) ML neurons with bursting mode.

Equation (8) shows the stochastic membrane voltage for the ML model neurons with n and m; (n,m ∈ [0, 1])
represents the fraction of K+ and Ca2+ ion channels open at the given time t. Both of which depend on the
instantaneous membrane voltage of the ML neuron Eq. (9)-(10). Stochastic activation of K+ and Ca2+ ion
channels depends on the per capita transition rates αn, βn and αm, βm, respectively [(12), (13), (17), (18)].
Same as the deterministic equations, the Iapp (µA/cm2) represents either the current-clamp current (i.e,
Istim) in case of regular or plain ML neurons (left, in Figure 1b) or the slow internal feedback current (i.e.,
Iinternal) for the bursting mode ML neurons (see 2.1.4; right plots, in Figure 1b).

dv

dt
= F (v, n,m) = 1

C
(Iapp − gCam(v − vCa)− gKn(v − vK)− gL(v − vL)) (8)

dn

dt
= G(v, n,m) = αn(v)(1− n)− βn(v)n

= (n∞(v)− n)/τn(v) (9)
dm

dt
= H(v, n,m) = αm(v)(1−m)− βm(v)m

= (m∞(v)−m)/τm(v) (10)

Cell voltage dependent functions of αm, βm, τm and m∞ are modeled using the voltage constants (i.e., va, vb
(mV)) and recovery process rate constant φm (s−1) for stochastic operation of Ca2+ ion channels. The
activation threshold (i.e., n = 0.5) and the slope of the voltage dependent activation function, n∞ is set by
Va and vb, respectively. For convenience, a membrane voltage dependent variable, ξm, is defined using va, vb
[Equations (11)-(15)].
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φm = 2 s−1, va = −1.2 mV, vb = 18 mV,

ξm = v − va
vb

, (11)

αm(v) = φm cosh(ξm/2)
1 + e2ξm

, (12)

βm(v) = φm cosh(ξm/2)
1 + e−2ξm

, (13)

m∞(v) = αm(v)
αm(v) + βm(v)

= 1
2(1 + tanh ξm) (14)

τm(v) = 1
αm(v) + βm(v)

= 1
φ cosh(ξm/2) (15)

Same as the Ca2+ channels, the K+ channels are stochastically simulated using voltage dependent functions
such as αn, βn, τn and n∞. These functions are modeled using the voltage constants (i.e., vc, vd (mV)) and
rate constant φn (s−1) and for convenience, a membrane voltage dependent variable, ξn, is defined using
vc, vd [Equations (16)-(20)]. vc sets the activation threshold (i.e., n = 0.5) and vd sets the slope of the voltage
dependent activation function, n∞.

φn = 0.04 s−1, vc = 2 mV, vd = 30 mV,

ξn = v − vc
vd

, (16)

αn(v) = φn cosh(ξn/2)
1 + e2ξn

, (17)

βn(v) = φn cosh(ξn/2)
1 + e−2ξn

, (18)

n∞(v) = αn(v)
αn(v) + βn(v)

= 1
2(1 + tanh ξn) (19)

τn(v) = 1
αn(v) + βn(v)

= 1
φ cosh(ξn/2) (20)

The stochastic ML neuron constants (21) such as reversal potentials, conductance and capacitance are set
exactly the same as deterministic parameters (7). (Morris and Lecar 1981; Anderson, Ermentrout, and
Thomas 2015)

vCa = 120 mV, vK = −84 mV, vL = −60 mV,
gCa = 4.4 mf/cm2, gK = 8 mf/cm2, gL = 2 mf/cm2,

C = 20 µF/cm2, Iapp = (variable; measured in µA/cm2)
(21)

Figure 1b is an example simulation of stochastically activating Ca2+ and K+ ion channels (displayed in the
second and third rows, respectively) using the equations (8)-(21). For that purpose system size (i.e., ΩN,M )
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for both ion channels is set to 1000 and for the plain neurons (on the left) are made to spontaneously spike
action potentials by applying Iapp = Istim = 95 with red-markers to indicate the identified spikes in the
membrane voltage traces (see 2.5.1). Stochastic ML neurons in bursting mode are explained in section 2.1.4.
The following section, 2.1.3 shows the derived model using Langevin equations for simulating these neurons.

2.1.3 Setting up Chemical Langevin Equation

In the study both the ion channels in ML neurons, K+ and Ca2+ channels are operating stochastically for
the stochastic simulations. I use Chemical Langevin Equations (CLE) to simulate ion channels stochastically.
This method is an approximation method and uses Stochastic Differential Equations (SDE) for stochastic
simulation, which is faster than other approximation methods like τ -leaping and the exact methods like
Gillespie’s exact method (Higham 2008). To speed up computation CLE uses diffusion approximation in
addition to time approximations used in τ -leaping method, and with faster reaction rates, to get sufficiently
large number of reactions happening (for each species), the errors incur would be small by switching to CLE
as compared to other exact methods (Wilkinson 2019).

As shown in (22), for each ion channels (for each different ions involved in the simulation, i.e., K+, Ca2+ for
ML neurons) I can compare it to a first order reaction chemical reaction showing the rates of switching the
states between “open” and “close.” (Note : Here Nopen, Nclose shows the states for K+ ion channels, and
similarly one can get another sets of equations for Ca2+ ion channels represented by Mopen,Mclose.). Similar
method is present for Hodgkin–Huxley model in (Ermentrout and Terman 2010).

Nclose
α−−⇀↽−−
β

Nopen (22)

From (22), two sub-reactions can be formulated along with a stoichiometry matrix for each sub-reaction. (23)
and (24) shows the chemical hazard function for channel opening and closing reactions.

Reaction (1) : Nclose
α−−→ Nopen,

h1(N) = αNclose ; ζ1 =
(
−1
+1

) (23)

Reaction (2) : Nopen
β−−→ Nclose,

h2(N) = βNopen ; ζ2 =
(

+1
−1

) (24)

Since in my model, mass conservation is applicable as no immigration/birth/death are not happening, for
simplifying the computation, I can convert 2D sets of equations to 1D equations. Total count for K+ ion
channels in the simulation is denoted by ΩN (similarly ΩM for Ca2+ channels). N(t) represents the count of
channels in Nopen state at a given time, t, so the count of channels in Nclose state would be ΩN −N(t) at
that time. I then updated the reaction hazard function for 1D system (25).

ΩN = Nopen+Nclose ; N(t) = Nopen(t)
∴ Nclose(t) = ΩN −Nopen(t)

h1(N) = α(ΩN −N)
h2(N) = βN

(25)

Chemical Langevin Equations can be set up as described (Higham 2008; Wilkinson 2019) for ion channel
simulation. For each time step of τ , the state of each ion channels counts can be updated using the following
equation :
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N(t+ τ) = N(t) + τ(h1(N) − h2(N))

+
√
τ h1(N) ξ1(t)

−
√
τ h2(N) ξ2(t) ; ξ1,2(t) ∼ N (0, 1)

=⇒ N(t+ τ) = N(t) + τ(h1(N) − h2(N))

+
√
τ
√
h1(N) + h2(N) ξ(t) ; ξ(t) ∼ N (0, 1)

(26)

I use (27)-(29) for simulating simple ML neurons (Figure 1b) to update each ion channel stochastically using
CLE.

dV

dt
= F (V (t), N(t),M(t)) = 1

C
(Iapp − gCa

M(t)
ΩM

(V (t)− vCa)− gK
N(t)
ΩN

(V (t)− vK)− gL(V − vL)) (27)

N(t+ τ) = N(t) + τ(α(ΩN −N(t))− βN(t))
+
√
τ
√
α(ΩN −N(t)) + βN(t) ξN (t) (28)

M(t+ τ) = M(t) + τ(α(ΩM −M(t))− βM(t))
+
√
τ
√
α(ΩM −M(t)) + βM(t) ξM (t) ; ξN,M (t) ∼ N (0, 1) (29)

Values of other parameters and constants are as described earlier in 2.1.2. Also, see 2.3 for the equations
with adding chemical synapse used for simulation of HCOs.

2.1.4 Bursting mode in ML Neurons

ML Neurons explained in previous sections were plain/regular neurons (i.e., non-bursting), where input
current is the current clamp current (i.e., Iapp = Istim). But, I also used ML neurons in bursting mode (right
side in Figure 1a & 1b). In bursting mode, the Current clamp current is set to zero (i.e., Istim = 0) and a
slow feedback current internal current, computed as (30), is responsible for plateau potential and reaching the
action potential firing threshold is responsible for fast dynamics of spikes (Izhikevich 2006). For bursting
mode, I used the following parameters, which I found suitable to elicit fast and slow dynamics present in this
mode.

Iapp = Iinternal

ε = 0.01; vo = −26;
dIinternal

dt
=ε ∗ (vo − V (t)) (30)

For simulating ion channels most of the ML neuron parameters and constants are used as described in the
previous section (For deterministic simulation (7); stochastic simulation (21)). The changes in the parameters
are shown as below.

For achieving bursting mode in deterministic simulation (right side, Figure 1a), the changes made are shown
in (31).

φ = 0.23, vc = 12, vd = 17.4 (31)

Similarly, for bursting mode in stochastic simulation (right side, Figure 1b), the changes in parameters are
shown in (32).
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φm = 2, φn = 0.23, vc = 12, vd = 17.4 (32)

Detailed description on designing different types of neurons is given in (Rinzel and Ermentrout 1998).

2.2 Effect of Current and Noise
Stimulus current would change the output of regular ML neurons and change in system size would affect the
noise level in both the types of ML neurons, regular and bursting mode.

2.2.1 Varying current and system sizeIn plain ML neurons

Figure 2: (A) Plain (non-bursting) ML neurons for different system size and stim. current.

Figure 2a shows regular ML neurons changing behavior with varied current (along the column) and the noise
(along the row). Threshold amount of stimulus current for deterministic neurons to start firing is about
89 µA/cm2. For stochastic neurons, increasing noise (i.e., reducing Ω) allows more spontaneous spikes for
sub-threshold stimulus currents.

2.2.2 In Bursting mode

Figure 2b shows Bursting mode ML neurons under various noise levels. Changing noise levels affects the
rhythm and bursting dynamics of ML neurons. Increasing noise increases bursting frequency in such neurons.

To summarize, higher system size in stochastic simulation causes lower noise, and the resulting patterns look
more comparable to deterministic simulations. Also, for regular neurons, increasing current causes frequent
firing of spikes. Effects of noise are drastic in lower current simulations.

2.3 Adding Synapse
To be able to create a network out of ML neurons, I altered the ML model neurons, once again, to have a
chemical synapse of both the inhibitory and excitatory types. Each neuron in the array of network, can be
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Figure 2: (B) ML neurons in bursting mode with different system size. No external stimulus current is
provided here.

configured separately to receive either no-synapse, inhibitory or excitatory synapses from a desired neuron
from the network (Appendix B.1.2).

2.3.1 Activation function

Figure 3: (A) Synaptic Activation Function

Figure 3a shows the activation function with a synaptic threshold of +5 mV and the function slope of 0.5. I
used (33) to define the sigmoidal activation function, which is inspired from (Yu and Thomas, n.d.).

10



synThreshold = 5, synSlope = 0.5,

Ssyn(v) = 1
2(1 + tanh((v−synThreshold)/synSlope));

(33)

2.3.2 Synaptic current

Synaptic current (measured in µA/cm2) is computed using the following formula for Inhibitory and excitatory
synapses in (34).

vsyn(exci.) = 100 mV, vsyn(inhi.) = −100 mV, gsyn = 1 mf/cm2

Isyn(v) =− gsynSsyn(v)(v − vsyn) µA/cm2 (34)

Synaptic current is added in in Iapp along with other possible currents such as current clamp current, Istim, or
the internal feedback current Iinternal. Thus, for regular ML neurons with synapse will become as following,

(For plain ML neuron with Synapse) Iapp = Istim + Isyn(v)
(For bursting ML neuron with Synapse) Iapp = Iinternal + Isyn(v)

(35)

Figure 3: (B) Synaptic operations in deterministic ML neurons

2.3.2.1 Synapses in deterministic simulation Figure 3b shows the effect of a synapse in deterministic
ML neurons in regular and bursting mode with the synapse is formed on Neuron-2. Regular type Neuron-1
are having current clamp, Istim = 95 to elicit spontaneous spikes in Neuron-1. Neuron-2 is left unconnected
for both the cases to see the effect of presynaptic activity.

2.3.2.2 Synapses in stochastic simulation Figure 3c shows synapse in stochastic ML neurons with
ΩM,N = 500 for all neurons. Neuron-1 (regular type) are firing action potentials due to the current clamp
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Figure 3: (C) Synaptic operations in deterministic and stochastic ML neurons

stimulus current Istim = 80 and the bursting neurons (at the bottom of the image), show the firing due to
internal feedback current. Each of the “driving” neuron is labeled as Neuron-1, which is projecting a synapse
onto Neuron-2 via either excitatory (left-column) or inhibitory (right-column) chemical synapse. Figure 3c
displays stochastic neurons.

2.4 Half Center Oscillator
Half center oscillator is formed through a reciprocal connection of two ML neurons and each of them are
supplied with super-threshold stimulus current in case of plain ML neuron types. So combining the type of
synapse type of ML neuron, I get the following types of HCOs :

1. Excitatory HCO with ML neurons, i.e, e-HCO(1)
2. Inhibitory HCO with ML neurons, i.e, i-HCO(1)
3. Excitatory HCO with bursting ML neurons, i.e, e-HCO(2)
4. Inhibitory HCO with bursting ML neurons, i.e, i-HCO(2)

Each of these HCO types can either be simulated using deterministic or stochastic methods. In case of
stochastic simulation, one can vary the noise levels to see the effect on it’s synchronization.

2.4.1 Plain ML neurons HCO

Figure 4a shows HCO with plain ML neurons with inhibitory and excitatory synapses. Stimulus current
is enabled for each of these neurons, Istim = 95. Effect of noise level is seen through varying system size,
(ΩM,N ).

2.4.2 Bursting mode ML neurons HCO

Similarly, HCO with bursting ML neurons is shown in Figure 4b where stimulus current is set to zero and
each neuron is having internal feedback current.

It appears that both excitatory and inhibitory HCOs show synchronization where the e-HCO show in-phase
oscillations and i-HCO show out-phase oscillations. In general, lower noise level shows tight coupling between
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Figure 4: (A) HCO with non-bursting ML neurons

Figure 4: (B) HCO with bursting ML neurons

the oscillators in either case. (See section 4 for discussion).

2.5 Measuring Synchrony
Once I get the voltage traces of both the neurons, I measure the amount of synchronization for each HCO
type, and later to compare the synchronization among all types. For measuring synchrony I use two methods.

13



1. Cross-correlation of two raw voltage traces.
2. Gaussian smoothed spike-time based binless correlation.

The first method does not make any assumptions and it compares raw voltage traces to each other to each
other. Pearson’s linear correlation coefficient is fond for the normalized voltage traces of neuron-1 and
neuron-2 for a given HCO. However, this method can be influenced by the noise levels in the system, which
can be an issue for lower system size simulations. So, in addition to this method, I am also using gaussian
smoothed spike-train for finding correlation, which incurs less error than simple peristimulus time histogram
(PSTH) as this method uses gaussian kernel and eliminates the noise generated from binning of the spike
times, as previously described in detail (Kruskal et al. 2007; Victor and Purpura 1997).

2.5.1 Detect spikes

Figure 5: Detecting spikes in ML neurons using amplitude threshold of 15mV.

I am finding and saving spike-times along with raw voltage traces for each simulation because one of the
methods to quantify synchronization requires them. Figure 5 shows threshold based spikes detection result
for a sample ML neuron with the voltage threshold set to 15 mV. I find local maxima to identify peaks in a
signal. I use a refractory period of 15ms to avoid detecting multiple spikes for a single action potential, which
would have been an issue when an unfiltered neuron has multiple local-maxima. Two sample neurons here
are not connected to each other via any synapse.

2.5.2 Gaussian smoothing

Previously Figure 5 shows identified spike-times (filled markers) and raw membrane voltage traces for two
ML neurons. Here, in the Figure 6 the gaussian-smoothed spike-train with a gaussian-kernel of different σ
(S.D.) are shown for the same neurons 1 and 2. Gaussian window size calculated from the Bin-Width (W )
using σ = W/

√
12 (Kruskal et al. 2007). Kernels are shown in the figure on the right pane.

2.5.3 Single Run : Effect of bin-width on cross-correlation

As previously shown, varying σ would change the gaussian-smoothed spike trains, and subsequently it will
change the correlation. Here I am comparing correlation coefficient found for various bin-width (thus, varied
σ) and comparing it across a wider range of noise levels (i.e., ΩM,N = {5e4, 5e3, 5e2, 5e1, 5e0}) for each HCO
types.

Figure 7 shows correlation of raw traces (i.e., without identifying spike-times) in upper left corner; and also
shows the effect of S.D. of the gaussian window (i.e., σ = W/

√
12) used for getting the binless correlation

between the spike trains. The raw membrane voltage traces for each of the neurons in all the HCOs are
shown in Appendix, Figure-9. It is apparent that raw traces and smaller bin-width (W=50) yields more
similar correlation than the higher bin-widths (W=250,500) and increasing the noise levels generally reduces
the coupling of the oscillators. Wider bin-width shows higher value of correlation as compared to smaller
widths. (See section 4 for discussion).
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Figure 6: Gaussian smoothing of spike trains with Gaussian kernel of different σ.

3 Results
While finding such correlation I noticed that some values were fluctuating a lot across the trials, thus, I was
getting slightly varying plots of Figure 7. So, for comparing the effect of noise (i.e., system size) on various
kinds of HCOs, I plotted the correlations of multiple iterations (n=25) on a semi-log scale plot. The result is
shown in Figure 8.

(Note : Correlation values in the scatterplot in Figure 8 contain a small jitter in X-axis direction, to better
visualize the points and variabilities without affecting their Y-axis values.)

Figure 8 quantifies the synchronization between two neuron cells simulated using deterministic and stochastic
methods while varying noise levels. The correlation values are compared across different methods of finding
correlation (i.e., raw traces without gaussian smoothing and with gaussian smoothing using various kernel
sizes). Smaller kernel (W=50) gives less variable results across multiple iterations. Positive values show
in-phase synchronization and negative values here suggest out-of phase synchronization. The absolute value
suggests the strength of the coupling between neurons in the HCO. Following the raw traces and binless
correlation (W=50), it is apparent that reducing noise levels (i.e, higher log10(Ω) values) give stronger
correlation of the oscillators and deterministic simulation gives similar results with small noise levels, as one
would expect. More discussion on variabilities due to bin-width and counter-intuitive trends seen in bursting
type inhibitory-HCO (in purple) is done in the following section (See Section 4).

4 Discussion and Conclusions
1. Higher binwidth in binless correlation leads to more variabilities and inflated correlation

values.
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Figure 7: Single iteration values of spike train correlation for various kinds of HCOs and for different system
sizes.

Figure 8 shows correlation comparison for different HCOs computed using various methods in 25 iterations.
Firstly, variations of the values across 25 iterations are more when the gaussian kernel used is wider (e.g.,
W=250, 500, etc.) and also with this method, more values show positive correlation as compared to negative
correlation. This may be the case because wider kernels would overlap more for neighboring spikes and show
an overall positive (i.e., in phase) correlation as opposed to anti-phased correlation. Higher variabilities
indicate that gaussian smoothing using a larger gaussian kernel would make correlation coefficient more
sensitive for the relative spike position. For example, if there are more than one spike present close-by, this
method would give very high signal for them (see in Figure 6), and ultimately this becomes an issue as the
gaussian smoothed signal would vary quite a lot based on randomness in spike position.

2. Binless correlation (with small width kernel) is more efficient in predicting correlation
for non-bursting HCOs and excitatory-HCOs.

While comparing raw traces and 50ms window results, one can see that gaussian smoothing works better for
non-bursting type HCOs (in blue, yellow). That is because raw correlation depends on the actual shape of
the spikes (see Figure 4a) and binless correlation only uses identified spike-times. So, with higher noise in
simulation (i.e., low omega), a spike in one neuron may fail to cause a spike in another neuron, yet the shape
of the raw trace would change which may lead the raw-signal method to count higher higher correlation than
spike-time based method. Also due to noise levels, if the peaks are not aligned but the overall spike shapes
are matching, the same thing may happen. Thus, here binless correlation with identified spike-times is more
useful for predicting correlation given certain noise levels.
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Figure 8: Comparing binless correlations in different types of HCOs for multiple runs (n=25).

3. For bursting type inhibitory-HCO binless correlation with “wider-width” kernels works
the best. Binless correlation with small-width kernel is in-efficient and raw-traces method
completely disregard spike-times in favor of slow plateau potential.

See bursting inhibitory-HCO (in Purple) in Figure 8, for which the trend looks very different between
raw-traces and 50ms kernel methods. This is mainly because the raw-traces method would largely influenced
by the plateau potential due to slow internal bursting current, whereas in the binless correlation method the
only identified spike-times would be used due to the pattern our bursting-ML neurons use, the fast current
feedback (i.e., a spike) would vary a lot based on the coupling type and noise level. Thus, the binless method
shows it more like un-synchronized (i.e., values close to zero) for inhibitory HCOs and raw-traces method
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show it as anti-phased synchronized, the result largely driven by the slow plateau potentials.

However, a wider-width kernel would disregard the exact spike-times but still works better for inhibitory-
bursting-HCOs (see W=250, Figure 8). This is because the plateau potentials itself oscillates (i.e., turns
on-and-off) and the spikes are segregated in chunks (see 4b), so the gaussian smoothed traces with wider
kernels would also oscillate in anti-phase. So, one can see why the wider-kernel is more efficient in predicting
correlation for bursting type inhibitory-HCOs.

4. Simple oscillator made using two ML neurons shows synchronized oscillations.

At the very least, the simple altered ML neurons show synchronous firing when coupled through any type of
synapse, creating a simple oscillator. Excitatory-HCOs show stronger correlations as compared to inhibitory-
HCOs. For a sustained firing, and in-turn, achieve synchrony, ML neurons either need slow internal feedback
current or constant external stimulus current.

5. Excitatory-HCOs show in-phase synchronization and inhibitory-HCOs show ant-phase
synchronization. Reducing Noise improves the degree of synchrony.

As explained earlier in discussion points 2 and 3, synchronization for non-bursting-HCOs and excitatory-
bursting-HCOs should be compared using binless correlation method with 50ms kernel (upper right, Figure
8)) and for bursting type inhibitory-HCO, I would use 250ms kernel (lower left, Figure 8)). Comparing the
correlation coefficients, qualitatively, across various HCOs it appears that excitatory-HCOs (bursting and
non bursting alike) show in-phase correlation, with bursting type HCO being higher tolerant to system noise
levels. Similarly, inhibitory-HCOs show anti-phase synchronization.
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A Appendix A : Single-Run Raw Plots (Ω and HCO types)
These plots are the raw voltage traces for each neurons in all HCOs, which are used to compute single run
correlations in Figure 7.

(a) Deterministic HCO

(b) Stochastic HCO with Omega=50,000.

19



(c) Stochastic HCO with Omega=5000.

(d) Stochastic HCO with Omega=500.
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(e) Stochastic HCO with Omega=50.

(f) Stochastic HCO with Omega=5.

Figure 9: Single-Run Raw Plots
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B Appendix B : Codes
B.1 Matlab code for simulation
B.1.1 ML_neurons : Parallel simulation of an array of neurons connected in a network

1 f unc t i on [Vm,nK, nCa , I i n t ] = ML_neurons ( det , dt , Ist im , I i n t , omega ,nK, nCa ,Vm,
PreSynVm , synapse , burst )

2 %% Each pass ing var ( except dt ) can be an array
3

4 % −−− Se t t i ng up neuron c e l l u l a r parameters −−−
5 % Model parameters f o r each neurons ( from (Anderson et . a l . , 2015) )
6 vCa = 120 ; % Rev . Pot f o r Calcium channe l s
7 gCa = 4 . 4 ; % Calcium conductance
8 vK = −84; % Rev . Pot f o r Potassium channe l s
9 gK = 8 ; % Potassium conductance

10 vL = −60; % Rev . Pot f o r l eak channe l s
11 gL = 2 ; % Leak channe l s conductance
12 Cm = 20 ; % Membrane Conductance
13

14 % Def in ing synapse ( from Z .Yu, PJT, 2020)
15 vSyn = 100∗ synapse ; % Make Rev . pot . neg f o r i n h i b i t o r y synapse
16 gSyn = 1∗ abs ( synapse ) ; % Make conductance zero f o r no−synapse
17 synThr = 5 ; synSlope = 0 . 5 ; % sigmoid a c t i v a t i o n fxn parameters
18 Syn = @(v ) 0.5∗(1+ tanh ( ( v−synThr ) / synSlope ) ) ;
19 % Syn = @(v ) 1 . / ( 1 + exp(−( synSlope /2) . ∗ ( v−synThr ) ) ) ;
20

21 % Burst ing
22 % Slow cur rent feedback f o r bur s t ing
23 ep s i = . 0 1 ; v0 = −26;
24 d I i n t = @(v ) ep s i ∗( v0−v ) .∗ burst ;
25

26 % K+ ion channel parameters
27 % vc = 12 ; vd = 17 . 4 ; phi_n = 0 . 2 3 ; % Adapted f o r bur s t ing ( from mlsqr )
28 % vc = 2 ; vd = 30 ; phi_n = 0 . 0 4 ; % For s imple (non−bur s t ing ) neurons
29 vc = 2 + burst ∗10 ; vd = 30 − burst ∗12 . 6 ; phi_n = 0.04 + burst ∗0 . 1 9 ;
30 xi_n = @(v ) (v−vc ) . / vd ; % sca l ed argument f o r n−gate

input
31 n in f = @(v ) 0.5∗(1+ tanh ( xi_n (v ) ) ) ; % n−gate a c t i v a t i o n func t i on
32 tau_n = @(v ) 1 . / ( phi_n .∗ cosh ( xi_n (v ) /2) ) ; % n−gate a c t i v a t i o n t−const
33 alpha_n = @(v ) n in f ( v ) . / tau_n (v ) ; % per cap i t a opening ra t e
34 beta_n = @(v ) (1− n in f ( v ) ) . / tau_n (v ) ; % per cap i t a c l o s i n g ra t e
35

36 % Ca2+ ion channel parameters
37 va = −1.2; vb = 18 ; phi_m = 2 ;
38 xi_m = @(v ) (v−va ) /vb ; % sca l ed argument f o r m−gate input
39 minf = @(v ) 0.5∗(1+ tanh (xi_m(v ) ) ) ; % m−gate a c t i v a t i o n func t i on
40 tau_m = @(v) 1 . / ( phi_m∗ cosh (xi_m(v ) /2) ) ; % m−gate time constant
41 alpha_m = @(v ) minf ( v ) . / tau_m(v ) ; % per cap i ta opening ra t e
42 beta_m = @(v ) (1−minf ( v ) ) . / tau_m(v ) ; % per cap i t a c l o s i n g ra t e
43

44 % −−− Se t t i ng up Chemical Langevin Equation −−−
45 tau = dt ;
46 % sto cha s t i ng K+ channe l s
47 omega_K = omega ;
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48 No = nK.∗omega_K ;
49 dWk = randn ( s i z e (No) ) ; % N(0 , 1 )
50 h1k = @(v ,X) alpha_n (v ) . ∗ ( omega_K−X) ;
51 h2k = @(v ,X) beta_n (v ) . ∗ (X) ;
52 N_next = @(v ,X) X + tau . ∗ ( h1k (v ,X) − h2k (v ,X) ) . . .
53 + sqr t ( tau . ∗ ( h1k (v ,X) + h2k (v ,X) ) ) .∗dWk;
54

55 % sto cha s t i ng Ca2+ channe l s
56 omega_Ca = omega ;
57 Mo = nCa .∗omega_Ca ;
58 dWca = randn ( s i z e (Mo) ) ; % N(0 , 1 )
59 h1ca = @(v ,X) alpha_m(v ) . ∗ ( omega_Ca−X) ;
60 h2ca = @(v ,X) beta_m(v ) . ∗ (X) ;
61 M_next = @(v , X) X + tau . ∗ ( h1ca (v ,X) − h2ca (v ,X) ) . . .
62 + sqr t ( tau . ∗ ( h1ca (v ,X) + h2ca (v ,X) ) ) .∗dWca ;
63

64 % Enforce va l i d l im i t s
65 l im = @(n ,Low ,Max) (n>Max) .∗Max + (n<Low) .∗Low + (n<=Max & n>=Low) .∗n ;
66

67 % Simulat ion us ing CLE or Det e rm in i s t i c eqns
68

69 % Update ion channe l s counts and f r a c t i o n f o r each neuron
70 i f det==1 % ( FOR DETERMINISTIC SIM )
71 nK = nK + dt ∗( n i n f (Vm)−nK) . / tau_n(Vm) ;
72 nCa = minf (Vm) ;
73 e l s e % ( FOR STOCHASTIC SIM )
74 No = N_next (Vm,No) ;
75 Mo = M_next(Vm,Mo) ;
76 No = lim (No , z e ro s ( s i z e (No) ) ,omega_K) ;
77 Mo = lim (Mo, z e ro s ( s i z e (Mo) ) ,omega_Ca) ;
78 nK = No./omega_K ;
79 nCa = Mo./omega_Ca ;
80 end
81 I i n t = I i n t + dt∗ d I i n t (Vm) ;
82

83 % Update membrane vo l tage f o r each neuron
84 dV = ( dt/Cm) . ∗ ( I s t im + I i n t . . .
85 − gL∗(Vm−vL) . . .
86 − gK∗nK. ∗ (Vm−vK) . . .
87 − gCa∗nCa . ∗ (Vm−vCa) . . .
88 − gSyn .∗ Syn (PreSynVm) . ∗ (Vm−vSyn ) ) ;
89 Vm = Vm + dV;
90

91 end

B.1.2 ML_network : Initializing and simulating a network of ML neurons

(Note : “Demo=1” option in this function gives a demo of all HCO types.)

1 f unc t i on [V, t , sp ikes ,X] = ML_network(demo , det , n , seed )
2 %% ( f o r Demo) : [V, t , s p i k e s ] = ML_network (1 , 0 ) ; % Sto cha s t i c demo
3 % ( f o r Demo) : [V, t , s p i k e s ] = ML_network (1 , 1 ) ; % Dete rm in i s t i c demo
4 % ( from fxn ) : [V, t , s p i k e s ] = ML_network (2 , det , n ) ;
5 % ( other . . ) : [V, t , s p i k e s ] = ML_network (0 ) ; % ( Uses network @ l i n e −27)
6 %
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7 % Actual ML neuron i s the func t i on "ML_neurons " ( at the very end ; l i n e# ~150)
8

9 % Read Network Design
10 i f demo == 1
11 % Demo: 1 ,2 : HCO−e x c i t a t o r y w/ stim current
12 % 3 ,4 : HCO−i n h i b i t o r y w/ stim cur rent
13 % 5 : Un−connected w/ low stim cur rent
14 % 6 : Busrt ing neuron (w/ NO stim−cur rent ) w/ NO synapse
15 % 8 ,7 : HCO−e x c i t a t o r y w/ Busrt ing neuron
16 % 10 ,9 : HCO−i n h i b i t o r y w/ Busrt ing neuron
17 % Neuron # 1 2 3 4 5 6 7 8 9 10
18 net = [ 2 , 1 , 4 , 3 , 0 , 0 , 8 , 7 ,10 , 9 ] ; % Neuron connect ion
19 synapse = [ 1 , 1 ,−1 ,−1 , 0 , 0 , 1 , 1 ,−1 ,−1]; % Synapse : i nh i / ex c i / o f f
20 burst = [ 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 ] ; % Burst mode : on/ o f f
21 i f det==1
22 I s t im =[90 ,90 ,90 ,90 ,88 , 0 , 0 , 0 , 0 , 0 ] ; % Current−clamp (nA)
23 e l s e
24 I s t im =[85 ,85 ,85 ,85 ,80 , 0 , 0 , 0 , 0 , 0 ] ; % Current−clamp (nA)
25 end
26 dt = 0 . 1 ; tmax = 3e3 ; system_size = 1e3 ; seed = 10 ;
27

28 e l s e i f demo == 0
29 % Network Design
30 net = [ ] ; % Neuron connect ion
31 synapse = [ ] ; % Synapse : i nh i / ex c i / o f f
32 I s t im = [ ] ; % Current−clamp (nA)
33 burst = [ ] ; % Burst mode : on/ o f f
34 system_size = [ ] ; % no i s e ( array or s i n g l e va lue )
35 tmax = 3e3 ;
36 dt = 0 . 1 ;
37 e l s e
38 % read data from 'n ' va r i ab l e
39 net=n . net ; synapse=n . synapse ; I s t im=n . I s t im ; burst=n . burst ;
40 system_size=n . system_size ; tmax=n . tmax ; dt=n . dt ; demo=n . demo ;
41 end
42

43 % Simulat ion
44 % I n i t i a l i z a t i o n
45 i f e x i s t ( ' seed ' , ' var ' ) , rng ( seed ) ; end
46 sz = s i z e ( net ) ;
47 omega = system_size .∗ ones ( sz ) ;
48 Vm = −100∗rand ( sz ) ; % Star t with random vo l tage
49 nK = rand ( sz ) ; % Star t with random f r a c t i o n
50 nCa = rand ( sz ) ; % Star t with random f r a c t i o n
51 I i n t = 0∗ ones ( sz ) ;
52 t = ( 0 : dt : tmax) ' ;
53 synapse ( net==0) = 0 ; % turn−o f f synapse f o r unconnected neurons
54 net ( net==0) = f i nd ( net==0) ; % ( note −1)
55 V = nan ( l ength ( t ) , sz (2 ) ) ;
56 M = nan ( l ength ( t ) , sz (2 ) ) ;
57 N = nan ( l ength ( t ) , sz (2 ) ) ;
58

59 % Find membrane vo l tage at each time−s tep
60 f o r i =1: l ength ( t )
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61 [Vm,nK, nCa , I i n t ] = ML_neurons ( det , dt , Ist im , I i n t , omega , . . .
62 nK, nCa , Vm, Vm( net ) , synapse , burst ) ;
63 V( i , : ) = Vm; M( i , : ) = nCa ; N( i , : ) = nK;
64 end
65 % Save Ion−channe l s s t a t e
66 X.M = M; X.N = N; X.Omega = system_size ; X. t = t ;
67

68 % Iden t i f y Spikes
69 spikeThr = 15 ; % mV; Neural sp ike de t e c t i on th r e sho ld
70 refTh = 15/dt ; % ms−>Steps ; Re f ractory per iod f o r sp i k e s
71 s p i k e s=c e l l ( sz (2 ) ,3 ) ;
72

73 f o r i =1: sz (2 )
74 % Find Peaks
75 xval=V( : , i ) ;
76 len_x = length ( xval ) ; va l = [ ] ; index = [ ] ; x i =2; % s t a r t at second data

po int
77 whi le x i < len_x−1
78 i f xval ( x i ) > xval ( xi −1)
79 i f xval ( x i ) > xval ( x i+1) % d e f i n i t e max
80 va l =[ va l xval ( x i ) ] ;
81 index = [ index x i ] ;
82 e l s e i f xval ( x i )==xval ( x i+1) && xval ( x i )==xval ( x i+2) % ' long ' f l a t

spot
83 x i = x i + 2 ; % sk ip 2 po in t s
84 e l s e i f xval ( x i )==xval ( x i+1) % ' short ' f l a t spot
85 x i = x i + 1 ; % sk ip one po int
86 end
87 end
88 x i = x i + 1 ;
89 end
90 % F i l t e r Peaks
91 index ( val<=spikeThr ) = [ ] ; % Apply Vm thre sho ld
92 va l ( val<=spikeThr ) = [ ] ;
93 ind=2;
94 whi le ind <= length ( index ) % Apply r e f r a c t o r y per iod
95 i f abs ( index ( ind )−index ( ind −1) ) < refTh
96 index ( ind ) = [ ] ;
97 va l ( ind ) = [ ] ;
98 e l s e
99 ind=ind+1;

100 end
101 end
102 % Save Spikes
103 s p i k e s { i , 1} = index ; % Save Spike index
104 s p i k e s { i , 2} = va l ; % Save Spike amplitude (mV)
105 s p i k e s { i , 3} = t ( index ) ; % Save Spike time (ms)
106 end
107

108 % Plot t r a c e s
109 i f demo == 1
110 % plo t Demo network
111 f i g u r e
112 s u p t i t l e ( " Pla in HCO Demo (Omg="+system_size +" , I="+Ist im (1) +") " )
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113 f o r i = 1 :5
114 subp lot (5 , 1 , i )
115 p lo t ( t ,V( : , i ) )
116 hold on
117 s c a t t e r ( s p i k e s { i , 3 } , 1 .4∗ s p i k e s { i , 2 } , 55 , 'v ' , ' f i l l e d ' )
118 i f i ==1, t i t l e ( 'HCO−e x c i t a t o r y w/ stim current ' ) ;
119 e l s e i f i ==3, t i t l e ( 'HCO−i n h i b i t o r y w/ stim cur rent ' ) ;
120 e l s e i f i ==5, t i t l e ( 'Un−connected w/ low stim cur rent ' ) ;
121 end
122 end
123 y l ab e l ( 'Vm (mV) ' )
124 x l ab e l ( ' time (ms) ' )
125

126 f i g u r e
127 s u p t i t l e ( " Burst ing HCO Demo (Omg="+system_size +" , I="+Ist im (1) +") " )
128 f o r i = 1 :5
129 subp lot (5 , 1 , i )
130 p lo t ( t ,V( : , i +5) )
131 hold on
132 s c a t t e r ( s p i k e s { i +5 ,3} , 1 .4∗ s p i k e s { i +5 ,2} , 55 , 'v ' , ' f i l l e d ' )
133 i f i ==2, t i t l e ( 'HCO−e x c i t a t o r y w/ i n t e r n a l cur rent ' ) ;
134 e l s e i f i ==4, t i t l e ( 'HCO−i n h i b i t o r y w/ i n t e r n a l cur r ent ' ) ;
135 e l s e i f i ==1, t i t l e ( 'Un−connected neuron ' ) ;
136 end
137 end
138 y l ab e l ( 'Vm (mV) ' )
139 x l ab e l ( ' time (ms) ' )
140

141 e l s e i f demo == 0
142 % a l l neurons in one p l o t
143 f i g u r e
144 s u p t i t l e ( 'Vm (mV) vs time f o r each neuron ' )
145 f o r i = 1 : sz (2 )
146 subp lot ( sz (2 ) ,1 , i )
147 p lo t ( t ,V( : , i ) )
148 hold on
149 s c a t t e r ( s p i k e s { i , 3 } , 1 .4∗ s p i k e s { i , 2 } , 55 , 'v ' , ' f i l l e d ' )
150 end
151 x l ab e l ( ' time (ms) ' )
152 end
153

154 % NOTES:
155 %
156 % (1) un−connected neurons get a dummy connect ion to Neuron1 , f o r va l i d

index ing .
157 % I have made sure that t h i s dummy connect ion does not a f f e c t in anyway ,
158 % because the synapse i s f o r c e f u l l y " turned−o f f " in the prev ious l i n e .
159 end

B.1.3 BinlessCorrelation : Plotting gaussian smoothed spike-trains and computing cross-
correlation between two traces.

1 f unc t i on [C, gs ] = GetBinlessCorr ( spk_ind_1 , spk_ind_2 ,W, t , dt , p l t , t t l )
2 %%
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3

4 gs . t=t ;
5 gs .W=W;
6

7 % Get sp ike t r a i n in bool va lue s
8 sz = s i z e ( gs . t ) ;
9 i f isempty ( spk_ind_1 ) | | isempty ( spk_ind_2 )

10 C=0; re turn ;
11 end
12 spike_train_1 = f a l s e ( sz ) ;
13 spike_train_1 ( spk_ind_1 ) = true ;
14 spike_train_2 = f a l s e ( sz ) ;
15 spike_train_2 ( spk_ind_2 ) = true ;
16

17 % Def in ing the gauss ian ke rne l
18 gs . sd = gs .W/ sq r t (12) /dt ; % SAMPLES; SD o f Gaussian Curve
19 t_window = −gs . sd ∗ 6 : 1 : gs . sd ∗6 ; % 6∗ sd window
20 gs . win = 1/( sq r t (2∗ pi ) ∗ gs . sd ) ∗ exp(−(t_window .^2 ) /(2∗ gs . sd ^2) ) ;
21 gs . tw = t_window∗dt ;
22 gs . sd = gs . sd∗dt ;
23

24 % Convolute i t with a gauss ian ke rne l
25 gs .V1 = conv ( spike_train_1 , gs . win , ' same ' ) ;
26 gs .V2 = conv ( spike_train_2 , gs . win , ' same ' ) ;
27

28 % Find c o r r e l a t i o n c o e f f f o r gauss ian smoothed s i g n a l
29 meanV1 = mean( gs .V1) ; meanV2 = mean( gs .V2) ;
30 Cov12 = ( gs .V1 − meanV1) . ∗ ( gs .V2 − meanV2) ;
31 Var1 = ( gs .V1 − meanV1) . ^ 2 ;
32 Var2 = ( gs .V2 − meanV2) . ^ 2 ;
33 C = sum(Cov12 ) / ( sq r t (sum(Var1 ) ) ∗ s q r t (sum(Var2 ) ) ) ;
34

35 i f e x i s t ( ' p l t ' , ' var ' )
36 i f p l t==0 | | p l t==2
37 f i g u r e ;
38 p lo t ( gs . tw , gs . win ) ;
39 t i t l e ( " Gaussian Window (+/− 6∗SD) W="+gs .W+"ms" ) ;
40 x l ab e l ( ' time (ms) ' ) ; y l ab e l ( 'Amp ' ) ;
41 end
42 i f p l t==1 | | p l t==2
43 f i g u r e ;
44 p lo t ( gs . t , gs .V1) ; hold on ; p l o t ( gs . t , gs .V2) ;
45 x l ab e l ( ' time (ms) ' ) ; y l ab e l ( 'Amp ' ) ;
46 t i t l e ( " Gaussian Smoothed Neural s p i k e s W="+gs .W+"ms" )
47 l egend ({ 'Neuron−1 ' , 'Neuron−2 ' })
48 end
49 i f p l t==5
50 f i g u r e ;
51 p lo t ( gs . t , gs .V1) ; hold on ; p l o t ( gs . t , gs .V2) ;
52 x l ab e l ( ' time (ms) ' ) ; y l ab e l ( 'Amp ' ) ;
53 t i t l e ( t t l )
54 l egend ({ 'Neuron−1 ' , 'Neuron−2 ' })
55 end
56
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57 end
58

59 end

B.2 Other things : LaTeX, Figures, Codes
• All Matlab simulation script, Matlab scripts for all figures, tex/md files for generating this report and

figures files are available here :
– <GitHub-shivanshdave>
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